Professor Robert Taylor

Professor of Mitochondrial Pathology

Research Focus

The overall aim of our research is to use biochemical, molecular genetic and cell biological tools to diagnose and characterise the molecular pathology associated with human mitochondrial (both mtDNA-derived and Mendelian) disorders so as to understand disease mechanism and benefit patient care through the development of treatment and provision of accurate genetic advice. This is largely achieved through leveraging next generation sequencing strategies (whole exome and whole genome sequencing) to identify novel disease genes associated with a range of mitochondrial and neurological pathologies with the broader aim of characterising the mechanisms which underlie post-transcriptional mitochondrial gene expression.

This work is wide-ranging, encompassing projects aimed at:

1. defining the prevalence, natural history and genotype:phenotype correlations associated mitochondrial disease

2. improving the laboratory diagnosis and options for prenatal and preconceptional genetic screening

3. defining the molecular mechanisms associated with mitochondrial disease pathology

4. using a genome-wide CRISPR screen to identify novel regulators of mitochondrial oxidative phosphorylation

This programme of work aligns closely with my regional and national NHS activities and is supported by close collaboration with many other PIs within the Wellcome Centre as well as numerous national and international collaborators, including the MRC-funded International Centre for Genomic Medicine in Neuromuscular Disease

Research aims:

  • to identify the genomic architecture and signatures of mitochondrial genetic disease
  • to better understand the molecular mechanisms underlying disease pathology
  • to use this information to support the delivery of therapeutic and treatment options

Publications

Shintaku, J., Pernice, W.M., Eyaid, W., GC, J.B., Brown, Z.P., Juanola-Falgarona, M., Torres-Torrenteras, J., Sommerville, E.W., Hellebrekers, D.M.E.I., Blakely, E.L., Donaldson, A., van de Laar, I., Leu, C.-S., Marti, R., Frank, J., Tanji, K., Koolen, D.A., Rodenburg, R.J., Chinnery, P.F., Smeets, H.J.M., Gorman, G.S., Bonnen, P.E., Taylor, R.W. and Hirano, M. RRM1 variants cause a mitochondrial DNA maintenance disorder via impaired de novo nucleotide synthesis. J. Clin. Invest. 2022;May 26:e145660. doi: 10.1172/JCI145660.

Rensvold, J.W.*, Shishkova, E.*, Sverchkov, Y., Miller, I.J., Cetinkaya, A., Pyle, A., Manicki, M., Brademan, D.R., Alanay, Y., Raiman, J., Jochem, A., Hutchins, P.D., Peters, S.R., Linke, V., Overmyer, K.A., Salome, A.Z., Hebert, A.S., Vincent, C.E., Kwiecien, N.W., Rush, M.J., Westphall, M.S., Craven, M., Akarsu, N.A., Taylor, R.W., Coon, J.J. and Pagliarini, D.J. Defining mitochondrial protein functions through deep multi-omic profiling. Nature 2022;606:382-388. doi: 10.1038/s41586-022-04765-3.

Thompson, K., Bianchi, L., Rastelli, F., Prunier-Piron, F., Ayciriex, S., Besmond, C., Hubert, L., Barth, M., Barbosa, I.A., Deshpande, C., Chitre, M., Mehta, S.G., Wever, E.J.M., Marcorelles, P., Donkervoort, S., Saade, D., Bönnemann, C.G., Chao, K.R., Cai, C., Iannaccone, S.T., Dean, A.F., McFarland, R., Vaz, F.M., Delahodde, A., Taylor, R.W. and Rötig, A. Bi-allelic variants in TAMM41 are associated with low muscle cardiolipin levels leading to neonatal mitochondrial disease. HGG Advances 2022;3:100097. doi: 10.1016/j.xhgg.2022.100097.

Pantic, B.*, Ives, D.*, Mennuni, M.*, Perez-Rodriguez, D., Fernandez-Pelayo, U., de Arbina, A.L., Munoz, M.O., Viller, M., Dang, T-M.J., Vergani, L., Johnston, I.G., Pitceathly, R.D.S., McFarland, R., Hanna, M.G., Taylor, R.W., Holt, I.J. and Spinazzola, A. 2-deoxy-D-glucose couples mitochondrial fitness with mitochondrial DNA replication and promotes the selection of wild-type over mutant mitochondrial DNA. Nature Commun. 2021;12:6997. doi: 10.1038/s41467-021-26829-0

Oláhová, M., Peter, B., Diaz-Maldonado, H., Szilagyi, Z., Singh, M., Sommerville, E.W., Blakely, E.L., Collier, J.J., Stránecký, V., Hartmannová, H., Bleyer, A.J., McBride, K.L., Bowden, S.A., Korandová, Z., Pecinová, A., Ropers, H.H., Kahrizi, K., Najmabadi, H., Tarnopolsky, M., Brady, L.I., Weaver, K.N., Prada, C.E., Õunap, K., Wojcik, M.H., Pajusalu S., Syeda, S.B., Pais, L., Estrella, E.A., Bruels, C.C., Kunkel, L.M., Kang, P.B., Bonnen, P.E., Mráček, T., Kmoch, S., Gorman, G.S., Falkenberg, M., Gustafsson, C. and Taylor, R.W. POLRMT mutations impair mitochondrial transcription causing neurological disease. Nature Commun. 2021;12:1135 doi: 10.1038/s41467-021-21279-0.

Hochberg, I., Demain, L.A.M., Richer, J., Thompson, K., Urquhart, J.E., Rea, A., Pagarkar, W., Rodríguez-Palmero A., Schlüter, A., Vendura, E., Pujol, A., Quijada-Fraile, P., Amberger, A., Deutschmann, A.J., Demetz, S., Gillespie, M., Belyantseva, I.A., McMillan, H.J., Barzik, M., Beaman, G.M., Motha, R., Ng, K.Y., O’Sullivan, J., Williams, S.G., Bhaskar, S.S., Lawrence, I.R., Jenkinson, E.M., Zambonin, J.L., Blumenfeld, Z., Yalonetsky, S., Oerum, S., Rossmanith, W., Genomics England Research Consortium, Yue, W.W., Zschocke, J., Munro, K.J., Battersby, B.J., Friedman, T.B., Taylor, R.W., O’ Keefe, R.T. and Newman, W.G. Biallelic variants in the Mitochondrial RNase P Subunit PRORP cause mitochondrial tRNA processing defects resulting and pleiotropic multisystem presentations. Am. J. Hum. Genet. 2021;108:2195-2204. doi: 10.1016/j.ajhg.2021.10.002.

Collier, J.J., Guissart, C., Oláhová, M., Sasorith, S., Piron-Prunier, F., Suomi, F., Zhang, D., Martinez-Lopez, N., Leboucq, N., Bahr, A., Azzarello-Burri, S., Reich, S., Schöls, L., Polvikoski, T.M., Meyer, P., Larrieu, L., Schaefer, A.M., Alsaif, H.S., Alyamani, S., Zuchner, S., Barbosa I.A., Deshpande, C.M., Pyle, A., Rauch, A., Synofzik, M., Alkuraya, F., Rivier, F., Ryten, M., McFarland, R., Delahodde, A., McWilliams, T.G., Koenig, M. and Taylor, R.W. Developmental consequences of defective ATG7-mediated autophagy in humans. New Engl. J. Med. 2021;384:2406-2417. doi: 10.1056/NEJMoa1915722.

Shin, C-S., Meng, S., Garbis, S.D., Moradian, A., Taylor, R.W., Sweredoski, M.J., Lomenick, B. and Chan, D.C. LonP1 and mtHsp70 cooperate to promote mitochondrial protein folding. Nature Commun. 2021;12:265. doi: 10.1038/s41467-020-20597-z.